实际上,关于COD和BOD,很多人也就知道COD是化学需氧量,BOD生化需氧量,还有老师们不下数万次强调过的用B/C判定水的可生化性,然后就魔性的在大脑里循环 0.3 0.3 0.3 0.3....不过随着自己经验的逐渐积累,才发觉自己之前了解的都是些啥呀。深深体会到“纸上得来终觉浅,绝知此事要躬行”的那么一点点真谛。一. 为什么需要BOD与COD无疑,污水中多数污染物是有机物。人类已经发现的有机物有几千万种,未发现的不知有多少种。一一表达不现实,有必要用一个简单易行的统一指标。目前污水最重要的处理方法是生化法特别是好氧法 。用微生物在好氧条件下降解有机物的氧气消耗来表达有机物浓度,可行且有很强的实战意义。因此需要BOD。无疑BOD应用无穷长时间来测定,即BODu。这也不现实。由于有实际意义的HRT不会太久,因此可以用几十天的BOD来近似代替BODu。为避免硝化影响,时间还要再短一些,因此一般使用20日BOD。20日BOD测定周期也很长。目前流行的是5日BOD。据说5日标准是因为英国最长的河流从源头到入海不超过5日。英国是岛国,如果美国也这么定,密苏里河入海恐怕要一个月吧。因此5日没有什么特殊的物理意义。下文没有特殊说明之处,BOD均为5日。为和社会工作周期吻合,好些欧洲国家习惯用7日BOD。5日BOD时间也不短,因此需要更快捷的方法。COD用激烈的化学氧化法,可以相对迅速获得结果,弥补时间缺陷。高锰酸钾氧化性强,且自身颜色鲜明,可用作COD方法。高锰酸钾颜色鲜明,特别适合在低浓度下准确测定,因此在给水领域盛行。日本在污水领域也很流行。(所以日本废水BOD经常表达得比COD还高,包括生活污水)。重铬酸钾在强酸条件下,加热回流时氧化能力更粗暴,多数场合氧化充分。世界范围内流行。下文没有特殊说明之处,COD均为重铬酸钾法。在更暴力的反应氛围下,一把火烧掉有机物,测定氧消耗量或二氧化碳产量,测定更可靠。此即TOD与TOC。明确知道污水中各主要污染物构成与比例,可以根据分子式直接计算,即理论COD。不过实际过程中往往不易实现或没有必要实现。二. BOD与COD方法、仪器的内在缺陷2.1 BOD方法、仪器内在缺陷BOD测定方法决定了,实际使用水样只能消耗一部分DO,对应有机物浓度范围大约是几个mg/L。有些污染物在这一浓度范围内生化性不坏,但是实际废水中因污染物浓度高,产生新的物理、化学、生化性质,导致BOD假阳性。上述性质变化可能是渗透压、pH、表面性质(有表面活性剂效应的物质超过临界浓度后影响传质)等。这类废水启动难,但只要反应器内不积累,很容易对付。例1:渗透压—糖。糖生化性极好,但高浓度糖水的渗透压高,直接生化性极差。(南方的蜜饯就是用高浓度糖水来保鲜的)。因BOD测定方法缺陷,必须稀释到几个ppm水平才能测定,因此渗透压问题被绕过去了。当然不会有人直接排放这么高浓度的糖水,且即使蜜饯浓度高,进入生化系统后只要糖可以在低浓度下降解,体系中始终不会出现积累渗透压问题。例2:pH—柠檬酸可直接进入三羧酸循环,生化性远超过葡萄糖。但到了一定浓度,废水明显为酸性,可以放几个月都不臭。做过油脂工厂废水的朋友们对酸性缓冲溶液型废水一定有有印象。当然用上一段所提解决方法也好用。例3:蛋白质变性—甲醛。甲醛测定BOD奇高。但高浓度甲醛别名是福尔马林,可泡标本!例4:极少数有机物因‘锁钥效应’,浓度越高,越不利于降解。大家有兴趣不妨查阅专业生物化学。例5:界面性质—洗涤剂。这与BOD测定方法的另外一项内在缺陷有关。BOD测定水样的DO变化不可以太小,否则测定缺乏重现性。如果真能准确测定ppb级别的DO消耗值,其实直链型洗涤剂—LAS的生化性至少不是很差。问题是LAS浓度稍微高一点儿,就达到临界浓度,改变界面性质,严重影响实际生化。例6:咸菜可长期保存,当然也难直接生化。向糖水中加入大量盐分,测定BOD很高,但持续进入生化系统后,虽然糖可降解,盐却几乎没有变化,后果是高BOD废水把微生物腌制成了咸菜。此类废水特点是:废水中有一些生化惰性物质,低浓度下不影响生化甚至是微生物必不可少的物质(例如氯离子、硫酸根离子等),一定浓度下影响废水整体物理、化学性质。与前面的5个例子不同,这类废水不可能直接用生化法处理,但测定B/C也可能很高。此类废水算是一种特殊变例。例7:油脂。各位水友可注意过油脂的BOD?生物油脂的生化性至少是不很差,做过屠宰废水的都知道。可是油脂实际平均降解周期并不短,5日BOD并不高。然而屠宰废水的处理一般有几个小时就可以获得满意效果,且反应器内不严重积累。因为有些有机物可以被微生物先吸附,相当于含在嘴里,虽然消化时间可能像吞吃了羚羊的蟒蛇一样长,但是—出水没有羚羊。这一例子对于BOD电极来说是个坏事:SS态有机物如何能被电极迅速测定?初步结论1、 BOD是一个有先天缺陷的测定指标。2、BOD是一个半经验指标。3、BOD不代表可降解有机物(当然更不代表不可降解有机物)。4、COD也是一个有先天性缺陷的指标,但比BOD可靠性好一些。5、COD经验性色彩比BOD弱一些。6、COD一般可以代表有机物总量。7、BOD/COD判据在多数场合可用。(如果询问具体哪些场合,我只能回答:先去练内功)8、COD-BOD作为经验判据很勉强,甚至不够作判据,不可用场合比例太大。初级水友要小心。当然理论COD-无穷大或充分大时间段BOD可以作充分判据,但实际中很难获得这一数据。9、生活污水、食品工业污水使用BOD作工程计算,也可以。化工废水用BOD来计算各池、各机械风险很大,特别是风量。初级水友小心。各位水友当然还要用BOD、COD。但用的时候最好能思考一下,尤其是难降解场合,不要踩地雷。
BOD(生化需氧量)测定仪是评估水体中有机物污染程度的重要工具,在水质监测、废水处理及环境保护等领域有着广泛应用。为了确保BOD测定仪的准确性和可靠性,定期维护和检查是必不可少的。本文将介绍BOD测定仪维护和检查所需的主要工具,以帮助用户更好地进行设备维护。
生化需氧量(BOD)是衡量水体中有机物污染程度的重要指标,BOD测定仪则是用于定量分析这一指标的专用仪器。为了确保BOD测定仪的测量精度,定期的校准工作显得尤为重要。本文将深入探讨BOD测定仪的精度校准方法,以期为水质监测领域的从业人员提供有价值的参考。
在环境监测和水质分析领域,生化需氧量(BOD)的测量是评估水体污染程度和生态环境状况的关键指标。BOD测定仪作为这一领域的重要工具,其测量精度直接关系到水质评估的准确性。本文将深入探讨BOD测定仪的测量精度及其影响因素,并提出提高精度的策略。
生物需氧量(BOD)是衡量水体中有机物污染程度的重要指标,而BOD测定仪作为环境监测领域的关键设备,其准确性和可靠性直接影响到水质评估的结果。为了确保BOD测定仪在经过校准后能够准确测量水样的BOD值,进行验证测试是必不可少的步骤。本文将详细介绍BOD测定仪校准后的验证方法,以确保测量结果的准确性和可靠性。
BOD(生化需氧量)是评估水体或废水中有机污染程度的重要指标。然而,在使用BOD测定仪进行试验时,可能会遇到一系列问题,这些问题可能源于操作、仪器故障、环境因素等多个方面。以下将详细探讨BOD测定仪试验中可能存在的问题及其解决方法。
BOD(生物需氧量)测定仪是一种广泛应用于水质监测和环境保护领域的仪器,它通过测量微生物在一定时间内消耗水中溶解氧的量来评估水体的有机污染程度。为确保BOD测定仪的测量结果准确可靠,在测量过程中需要注意以下事项。
在环境保护和水质监测领域,生化需氧量(BOD)是衡量水体中有机物污染程度的重要指标。BOD测定仪作为专业工具,其准确性和可靠性直接关系到水质评估的准确性。零点校准,作为BOD测定仪使用前的必要步骤,对于确保测量结果的精确性具有至关重要的作用。本文旨在探讨BOD测定仪零点校准的目的及其重要性。
BOD(生化需氧量)测定仪是一种用于准确测量水中生化需氧量(BOD)的专用仪器。它通过测量水样中的BOD值,能够了解水体中有机污染物的含量水平,判断水质是否符合相关标准。BOD测定仪以其高准确性和高灵敏度在水质监测和相关领域中发挥着重要作用。
BOD(生化需氧量)是评估水体或废水中有机污染程度的重要指标,其测定结果的准确性直接影响到环境水质评估和废水处理工程设计等重要工作。然而,在实际使用过程中,BOD测定仪可能会受到多种因素的干扰,从而影响测定数据的准确性。本文将详细探讨影响BOD测定仪数据准确性的主要因素。
BOD(生化需氧量)测定仪是环境监测和水质分析中不可或缺的重要工具,用于评估水体中有机物的污染程度。它通过测量水体中有机物被微生物分解所需的氧量,从而反映水体的自净能力和污染状况。为了确保BOD测定仪能够长期稳定运行并提供准确可靠的测量结果,正确的维护与保养方法至关重要。本文将详细介绍BOD测定仪的维护与保养方法,帮助用户更好地管理和使用这一设备。