在膜生物反应器中,由于膜的截留,微生物全部留在反应器内,不存在因污泥膨胀而导致微生物大量流失的问题。因此,MBR工艺一般被认为是能很好的应对污泥膨胀。但是,一旦在实际使用中出现污泥膨胀,就会对MBR工艺的运行产生很大的影响。 1、污泥膨胀的状状及危害 在膜生物反应器中,随着时间的推移,膜的内外表面都会受到不同程度的污染,导致膜过滤压力升高,膜运行周期缩短。 近年来,许多研究认为细胞外聚合物是造成膜污染的诸多因素中较重要的生物因素;特别是当污泥中非丝状菌发生膨胀时,胞外聚合物浓度急剧上升,严重影响膜组件的正常运行。缩短膜组件的更换周期。 从分析可以看出,污泥膨胀对膜污染的影响很大,直接缩短了膜的正常运行周期,进而缩短了膜的更换周期,大大降低了项目的经济效益( 在本项目中,膜组件的投资约占总投资的30%)。 项目运行过程中测得原水中BOD5、N、P的平均质量比为100:3:4。在不采取任何措施的情况下,污泥的SVI值逐渐增加到220mL/g,发生污泥膨胀。活性污泥的微生物种群在SVI值逐渐增加的整个过程中发生了变化,变化可分为两个阶段。 在一阶段,SVI 从开始时的 80mL/g 增加到 170mL/g。在此过程中,丝状菌的数量逐渐增加,成为活性污泥中的优势菌种。丝状菌之间的架桥作用干扰了污泥絮体的凝聚和压实,使污泥的沉降性能恶化,SVI值升高。但此阶段持续时间短,污泥膨胀并不严重,危害较小。 第二阶段,随着运行时间的增加,SVI值从170mL/g增加到220mL/g,并且没有继续上升,SVI值一直保持在200mL/g以上。在此过程中,丝状菌的数量逐渐减少,大量高含水量的粘性菌胶团生长。当SVI升至220mL/g左右时,显微镜下观察不到或仅观察到少量的丝状菌。菌胶团中的细菌分泌的大量粘性物质使污泥形成均匀的块状,阻碍了污泥絮体的下沉和压缩,污泥的沉降性能严重恶化,导致非丝状菌膨胀。 当污泥膨胀时,可以看到像云一样的污泥漂浮在反应池中,并一层一层地扩散到整个池中。为此采取了一系列诊断措施:测试反应池混合物流出液的pH值和混合物中的DO。测试结果表明,混合物的pH值稳定在7.6左右,DO的质量浓度约为2.73 mg/L,均在正常范围内。 如前所述,进水中BOD、N、P的平均质量比为100:3:4,属于缺氮状态。综合以上观察和文献回顾,我们认为污泥高粘度膨胀的原因与缺氮有关。 2、污泥膨胀的控制 2.1 絮凝法 膨胀活性污泥的密度一般比水小,作为应急处理措施,可考虑投加混凝剂,以改善其沉降性能。我们初步选择了常用的高分子混凝剂——阳离子型聚丙烯酰胺和无机混凝剂——硫酸亚铁进行对比试验。 2.1.1 聚丙烯酰胺投加量与污泥沉降性能的关系 聚丙烯酰胺的投加对于污泥的沉降性能的改善有一定的效果,且存在一个较佳投加量,但是,效果不是很理想。笔者分析后认为,该中水回用系统采用新型淹没式复合膜生物反应器,曝气量大、水力搅拌强烈,聚集起来的絮体颗粒容易遭到破坏,从而导致混凝效果不理想;当投加量高于较佳投加量时,絮凝体除中和胶体的负电荷以外,过多的正电荷又使胶体离子带上正电荷而重新稳定。 2.1.2 硫酸亚铁投加量与污泥沉降性能的关系 阳离子型聚丙烯酰胺的投加效果受水力条件等因素的限制不是十分理想,同时其单体有毒性、难降解,存在二次污染问题,经济效益较投加硫酸亚铁差。 硫酸亚铁价格便宜、使用简单,对膜及污泥没有负面影响,其对污泥密度的影响是有效的,但其不能从根本上解决营养比例失调的问题,所以只能作为应急控制措施。 2.2 营养盐调整法 在污泥膨胀问题的研究中,对污泥膨胀的恢复与控制是一个十分重要的环节。在该中水回用工程的运行过程中发现,投加硫酸亚铁后,沉降性能一度改善的活性污泥在原有有机负荷条件下如停止投加,继续进行处理,则活性污泥的沉降性能就会逐渐恶化,三日后恢复到投加前的状态。所以需要寻找一种在活性污泥膨胀后行之有效的恢复控制方法。 运行过程中我们对正在同时运行的两组膜生物反应器进行对比试验:一组投加了充足的氮源,使其BOD5,N平均质量比约为100:5;第二组在投加了充足的氮源的情况下,我们同时提高了进水有机负荷,有机负荷(以CODCr计)提高到2.0kgCOD/m3˙d以上。我们发现,中污泥的SVI值降低到150mL/g以下时,一组当反应器运行的时间为一周左右;第二组反应器运行的时间仅为三至四天。 实际运行经验表明:一、解决因氮的缺乏引起的污泥膨胀的根本的解决方法是调整营养物质的比例。第二、在保持营养物比例适当的情况下提高有机负荷,可以缩短污泥的沉降性能恢复正常的时间。 2.3 其他控制方法 在污泥粘性膨胀较严重的情况下(用容器装一些污泥,无论用什么方法污泥始终粘附在容器的表面),可考虑适当排掉一些膨胀的污泥,再重新取一些新泥,以减少多糖类物质对污泥的覆盖;同时增加水力停留时间,使没有被完全氧化的有机物有足够的时间被消耗掉。 由于原水中洗涤剂含量很高,加之曝气强度较大,经常出现白色、粘稠的泡沫,并且越积越多,当污泥发生膨胀时,危害较大。2002年12月29日夜,由于泡沫积累成为高达一米多高的泡沫山,致使污泥大量流失。经过这次事故以后,我们除投加消泡剂以外,采取了水力消泡的方法。在反应池上方安装喷头,用MBR反应器的出水对反应池上部进行喷淋,以控制膨胀污泥和泡沫对反应器的危害,并已取得良好的效果。 3、结论 通过对中水回用工程近一年来运行状况的观查与分析,总结起来有以下几点值得注意: ①以洗浴水为主要原水的MBR工艺在污泥膨胀期,可以采用硫酸亚铁作为应急投加混凝剂,较佳投加量为60mg/L,但因其不能从根本上解决营养比例失调的问题,所以只能作为应急控制措施。 ②对于该中水回用工程运行过程中出现的污泥膨胀,根本的解决方法是调整营养物质的比例;同时我们发现,在保证营养物比例合适的前提下,提高有机负荷可以加速污泥沉降性能的恢复。工程实践证明,通过以上措施我们成功的控制了污泥的高粘性膨胀。同时我们发现,增加排泥以及增加水力停留时间也是有效的辅助措施。
|